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Abstract: The experiences during the flood events of the last years urgently showed the limitations of the technical flood protection and the necessity for a preventing flood protection. The design flood concept does not offer comprehensive protection possibilities. With increasing size of the river section concerned and the necessity to seize the effectiveness of measures and possible damage, the necessary time requirement and concomitantly the costs of each simulated variant rise. Thus efficient solutions fitting the requirements of the flood protection are to develop. The algorithms developed in the late 20th century on basis of the Reynolds equations are only limited suitable to consider all aspects of flood protection. Within the range of the one-dimensional models additional assumptions (e.g. the neglect of local acceleration in relation to the gravitation) were met, to consider the typical characteristics of flood events (long periods and large spatial expansion) in times of smaller computer capacities. But, by the reduction on one dimension they fail as tool, as soon as it comes to flooding of land. On the other hand, even two-dimensional models are too complex and generally not applicable for near real-time purposes. A solution is presented in this paper. One- and two-dimensional approaches are combined to an effective flood protection system.
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1. introduction
Any forecasting of the impacts of floods has to balance between accuracy and efficiency. The complexity of models available today ranges from simply intersecting a plane representing the water surface with a Digital Elevation Model for estimating the flooded area to full solutions of the Navier-Stokes equations. Techniques which use two-dimensional, depth-averaged solutions of the Navier-Stokes equations incline high computational costs and are generally not applicable for near real-time purposes. However, the sophistication of flood inundation modelling has increased in line with model developments and increased computational resources. Nevertheless, it is still an open question, if simpler models may provide similar levels of predictive ability. This is the focus of the paper, where we present the development and testing of a combined one-dimensional hydrodynamic model and a two-dimensional Storage Cell model with an implicit time integration scheme.
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Figure 1: The scale triplet: Extend, spacing and support have to fit to present the real world adequately in a numerical model
The developed model “Ilmo-Flood” (Interlinked Model for large floods) is part of the German RIMAX (“Risk managment and assessment of extreme floods”) joint project Planning Flood Control Measures in the Unstrut River Basin. The Unstrut river system is known as very complex due to certain polders, its flooding channels and its total length of more than 250 kilometres divided in several branches. Thus, the hydraulic system may not be regarded as an array of decoupled sub problems. The communication between the sub-modules is implemented as a bidirectional coupling mechanism therefore. For the calibration of the model comparative data in the form of measured hydrographs and observed flood inundation extend was used. Then both, historical and 100 synthetically generated events were simulated. The technical flood protection was optimized with the help of the high efficiency of the developed interlinked one- two-dimensional method.

2. INTERLINKED MODELLING OF LARGE FLOODS 
2.1 The Scale problem
A Scale is a size class and refers to characteristic periods and lengths of phenomena, within aspects of these phenomena are regarded as constant and integrated (PLATE, 1992 and BLÖSCHL, 1996). Mathematically the connection of space scale, the effects of small-scale phenomena and the describing model are defined by the scale triplet (BLÖSCHL et al, 1995).
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According to this definition each model and each measurement are linked with the reality over the three characteristics “Extend”, “Spacing” and “Support”. The numerical model must consider these three characteristics. Figure 1 presents the relations between model and reality as well as the consequences from missing consideration of the three characteristics. 

2.2 The theory of coupled modeling
As a result of analyzing the scale problem only the trivial conclusion follows, that the selection of suitable model techniques is small and limited to one-dimensional approaches with larger scales. Although there are approaches of different complexity within one dimensionality, yet the change of dimensionality has surely the greatest importance for the quality of results. Depending on the specific model this dimensional change arises in the lower or upper meso-scale and leads to a neglect of substantial aspects of a flood. The problem of the correct balance between the high computational requirements of two-dimensional procedures and the strongly parameterized representation of geometry of one-dimensional approaches can be defused by hybrid approaches. Hybrid procedures use the special advantages of the one- and two-dimensional procedures and minimize the influence of the respective negative characteristics. Thus, the river is represented by a one-dimensional model, while land flooding is treated as two-dimensional problem (see Figure 2, KAMRATH, 2008).
The determination of the flooding surfaces and local flow-depth in the retention areas is done via a two-dimensional model, with only the continuity equation being considered (“Storage cell”). This simplification of the shallow water equations is particularly suitable for "initially dry land" applications (BATES et al, 2000). The two dimensional diffusion wave model treats each cell as a storage volume for which the change of water is equal to the fluxes into and out of it during the time step (eq. 2). The conservation of momentum is even neglected, when velocities are slow. These storage methods have certain advantages as they are tremendously faster than any RANS (Reynolds-averaged Navier-Stokes) method available. On the other hand, diffusive wave methods are based on the solution of a set of stiff ordinary differential equations (ODE) where certain implicit methods perform tremendously better than explicit ones. Thus explicit methods are not generally feasible for Storage Cell models.
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Figure 2: Coupled model. The river itself is represented as a one-dimensional sub-model, while the land behind the dikes is represented as a two-dimensional model. The different models exchange their data.
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Vi in the cell i describes the existing water volume in [m³], t is the time [s] and Qi, j stands for the fluxes [m³/s] between two cells i and j. QRB, i describes possible discharges into the cell i given from the outside [m³/s]. The change of the water level in time is expressed over the quotients dh/dt.

The hydrodynamics of one-dimensional rivers is based on the St. Venant equations respectively on their simplifications. Methods according to the theory of the diffusive wave are particularly suitable for large models, because back water effects can be considered. At the same time those models are very durable (see HAGER et al., 1985, SINGH, 1996 oder SINGH, 2004).
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In the equation above a describes the flow surface of a cross section, q [m³/s] the flow in main direction of flow, qr [m²/s] lateral supplies, qa lateral losses, x the main direction of flow and t the time. The pulse equation according to the theory of the diffusive wave reads:
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The energy-gradient can be expressed e.g. with the help of the Manning Strickler equation. The implicit solution succeeds with the help of a 4-point-discretization scheme (AKAN et al., 1977).
2.3 Coupling technique
The individual 1D/2D-modules must exchange data among themselves in the form of boundary conditions. The difficulty consists of the fact that the exchanged boundary conditions are in both coupled partial modules themselves boundary conditions. Thus a decoupled solution is not possible. In order to keep the error of state small at the coupling borders, the specific value of a variable (e.g. the water level h or the discharge Q) is predicted in a first step only. 
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The improvement succeeds with the help of the trapezoidal rule, whereby the predicted value * is used for the computation of the derivative (FERZIGER & PERIC, 2002):
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This is a 2nd order method. Procedures of higher order can be won with the information of further time steps. At the additional points the data were already computed (past data) during the simulation. Suitable multipoint methods originate from the family of the Adam methods (FERZIGER & PERIC, 2002). For the simple case of two coupled, one-dimensional river sections the algorithm is presented in Figure 3. The point B is both, point of origin of the partial model 2 and terminator point of the partial model 1 and thus for both partial models a boundary point, for which appropriate boundary conditions are necessary. On the basis of the values at the last computed times the lower boundary condition (water level h) of the upper-water-lateral strand is measured first by eq. 5  (hPred, t=t+1, Pred). This predicted value is corrected by eq. 6 and used as boundary value then (hCor, t=t+1, Cor). From the simulation of the first strand the flow Q in the place B follows. For the computation of the second strand this value is set as upper boundary condition. From the simulation the hydrodynamically determined correct water level of h at B follows. 
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Figure 3: Coupling technique. In a first step the unknown boundary condition is predicted. In a second step the predicted value will be corrected and used as boundary condition. The last step is to compute the error between the corrected and real value.
For the next time step this simulated water level at point B is used. Thus, there is a feedback between the Predictor Corrector method and the simulation for the point B. An error tolerance controls the accuracy between forecast and actual water level at the point B.
3. Example 

Figure 4 shows the complexity of the example system. The model covers the river Unstrut as the main river and the river Wipper, the river Helme and a flood channel as tributaries. At least, there are four modeled flood polders: The polder Odisleben, the polder Mönchenrieth, the polder Ritteburg and the polder Schönewerda. The filling of the polders is only controlled by the geometry of the intakes of the polders (points 1- 7 in figure 4). Thus, the use of the 1D-2D flood simulation model ILMO-flood with applied predictor-corrector coupling may help to analyze the level of efficiency of the flood protection system.
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Figure 4: The example of a complex river system. 4 one-dimensional river models and 4 two-dimensional sub-models communicate and exchange data (Connections 1 – 7 couple 1D-2D, connections a – d couple 1D-1D, static inflow linking at points i - iii). Together the sub-models form a complex flood-forecasting model. The wave-theory helps to minimize computational costs.
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Figure 5: Results of optimization of intake geometry. Maximum discharge levels down to 84% of discharge in the not optimized system. 
The optimization of the Unstrut-system covers the correction of the altitude of the intake structures of the polders as the first step. Figure 5 shows clearly, how the hydrograph curve (d = 4 days) flattens itself in consequence of the better functionality of the polder and that the maximum discharge during the flood event is reduced from 220 m³/s to 184.5 m³/s. At the same time rises the buffered water volume in the polder (see Figure 6). For the accomplished partial optimization 20 simulation runs were necessary with an average computing time of 32 min. on a regular personal computer system. In the context of RIMAX the possibility of simulating such complex systems often with different boundary conditions is a positive forward-looking result.

4. Conclusions

Hybrid models change handling possibilities due to the scale problem and the difficulties of analyzing extreme flood events in large catchment areas. The distribution into a one- and two-dimensional simulation sections increases the efficiency of the whole model, so that complex systems can be examined more efficiently and more detailed. Coupled 1D-2D models permit high scenario numbers. Here they extend the possibilities of modern, risk-oriented flood forecasting and preventing efforts. 

Apart from the coupling of different partial models to an overall system the presented method uses consistently possible simplifications of the flow equations out (diffusive wave theory). Altogether the test results show for the river Unstrut area that coupled models improve the possibilities of the modern flood protection by the increase of the evaluable scenarios.
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Figure 6: Due to the opt[image: image13.wmf]

0



 HTMLCONTROL Forms.HTML:Hidden.1 [image: image14.wmf]

utf8

imization of the intake geometry an additional 10% of the whole water-volume of the flood event is stored in the polder areas.
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