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Development of a discharge prediction method based on Topological Case-Based Modeling and a distributed hydrological model
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Abstract: The purpose of this research was to develop a unique discharge prediction method that combines the advantages of Topological Case-Based Modeling (TCBM), a kind of case-based reasoning, and distributed hydrological models. Many technologies developed for river flood prediction are based on distributed hydrological models, which have such disadvantages as the difficulty in determining accurate parameters and the long time required for model construction. Calculation is also time-consuming, which makes it difficult for real-time prediction. To counter this issue, the authors utilized TCBM, to realize fast calculation speed and easy parameter-determining. TCBM gathers past data of measured rainfall volume and discharge and accumulates them in a case base, where rainfall volume data are input and discharge data are output. By inputting the predicted rainfall volume and searching for a case most similar to this rainfall volume, it can predict discharge of several hours ahead, in real-time. Since discharge is predicted from past data accumulated in the case base, if rainfall volume is a value that has never been recorded and therefore not in the case base, the predicted discharge is likely to be less reliable. This was resolved by using Hydro-BEAM, a distributed hydrological model, to store cases with values of rainfall volume that have not been recorded or experienced into the case base. This new discharge prediction method was named Hydro-TCBM. In this research, the authors employed TCBM and Hydro-TCBM in estimating discharge of the Tama River in Tokyo, Japan during fiscal 2004, a year with many typhoons. Results indicated that the estimation error of Hydro-TCBM was lower than the estimation error of TCBM alone. This study found that Hydro-TCBM can be very useful in disseminating flood warnings in real-time.
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1. INTRODUCTION

Methods for predicting river floods have been developed by many research institutes. While many models based on runoff analysis have been developed, there are not so many methods that can predict river floods in real-time. The authors have developed a discharge prediction method based on Topological Case-Based Modeling1) (TCBM) using a black box model. This method stores past data in a case base, from which predicted values are extracted. Thus, it only requires a personal computer to construct a system that predicts a discharge in real-time. It is well known that TCBM is efficiently adaptable to problems that have linearity. On the other hand, discharge is approximately represented as linear equation with some variables of accumulated rainfall volume. Therefore, discharge model is well constructed using TCBM with stepwise method that is common for selecting linear variables. In addition, it is an objective method in that it determines variables to input based on analyses of measurement data stored as past cases. However, the prediction of a discharge by TCBM alone is less reliable when an unprecedented heavy rain not recorded in the case base is predicted. This has been a major challenge of this prediction method. Therefore, TCBM and Hydro-BEAM were combined to develop Hydro-TCBM, a real-time prediction method that also responds to heavy rain.

2. PREdiction of a discharge based on TCBM

2.1 Overview of the TCBM (Topological Case-Based Modeling) methodology

With conventional modeling methodologies, the input-output function for prediction (or estimation) are generated from the learning data. On the other hand, Topological Case-Based Modeling (TCBM) method used for predicting discharge generates a topology of input to estimate model output error. Although topological input space can be generated by quantization, learning data is used to decide quantum range. Quantization employs the concept of continuous mapping, and is carried out by specifying the output error limit.
Next, TCBM generates a case that combines input quanta and output values by averaging the output values of the learning data of the same quantum by input space. This type of case-base generation is carried out for each quantum where data are present. To estimate or predict the output, it searches for cases in the case-base which are nearest in topological distance to the new input value, and averages the case outputs. At the same time, it estimates prediction error by the distance measured by input topology. (See Figure 1)

Predictions and estimations are made basically by case-based reasoning, as shown in Steps 1 to 4 below: 
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Figure 1:  Overview of TCBM
i)
Accumulate past cases, or experiences, (input/output relationship) into a case-base. (Construct the prediction model)

ii)
Search the case-base for past cases with input most similar to the new input.

iii)
The new output is the output of the similar past case. When there is no similar past case, it searches for a case with a high degree of similarity, and uses that as the output. 

iv)
After finding the correct output for the new input, this new case is added to the case-base. (Learning function)

With conventional case-based reasoning, the method of determining the degree of similarity for judging the similarity of case intervals (conversion to error value) is dependent on the prediction target, and therefore lacks generality. TCBM, however, can determine the degree of similarity in various objects that fit the premise of a continuous input/output relationship by the concept of continuous mapping of topology in mathematics.
The characteristics of TCBM are that it takes events from accumulated past measured data and converts them into cases, and makes it possible to make predictions by searching for a past case that is most similar to the present, without the use of any special principle or mechanism. 

2.2 Model for predicting a discharge

The model for predicting discharge using TCBM can be expressed basically as in the following formula:

[1] Discharge(t) = f(XX_xh(t-(tX), XA_ah(t-(ta), XB_bh(t-(tb), …,Tide level, Temperature, and other factors)
XX_xh(t)
:Accumulated rainfall volume of the entire river basin

XA_ah(t)
:Accumulated rainfall of A domain

(ta
:Time it takes for rainfall in A domain to reach the measurement point

Tide level
:Typical tide level of the ebb and flow affecting the measurement point

Temperature
:Typical temperature of the entire river basin

Domain indicates river basin, of which A domain, B domain… are those with rainfall that affects discharge. This prediction model uses as parameters the accumulated rainfall volume of a certain time span in each domain, and the flow time from the domain to the measurement point as Δt1, Δt2…Accumulated rainfall volume is considered the maximum volume stored according to the tank model of the runoff model. Δt indicates the flow time from the tank to the measurement point, and is defined as the runoff time. In this manner, runoff events that are the target of the runoff model are expressed here as total hours and time lapsed. Tide level, also one of the parameters, affects discharge near the ocean; therefore it becomes necessary to include tide level for domains near the ocean. It is also necessary to examine the temperature for its impact on discharge in seasons such as winter when discharge is relatively low. Wastewater volume fluctuates according to living patterns and temperature.

In constructing the prediction model, discharge is analyzed as shown in Figure 2, and divided into two types, regular flow and fluctuating flow due to rainfall. The first is dry weather flow, and the second is wet weather flow. It was reasoned that, since there is a strong connection between rainfall and the change in discharge, it would be effective to handle separately the change in discharge due to rainfall and other flows. 

The above model for predicting discharge in dry weather is constructed from several years of data of discharge, tide level, and temperature. Constructing the model for predicting the increase of flow in wet weather requires several years of data of discharge and predicted discharge in dry weather of the same term. It takes the difference between flow in wet weather and predicted flow in dry weather of the same period to obtain the increase of discharge in wet weather, and uses this data with rainfall volume to construct the model. Figure 3 shows the model for predicting the increase of flow in wet weather in 3-D. Two parameters were extracted as functions of flow volume.
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Figure 3:  Discharge prediction model (facet in 3D)

2.3 Method to select variables for discharge model in wet weather
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Figure 2:  Overview of discharge prediction flow
In order to construct a model by TCBM, input variables that are factors of output variable have to be selected properly. These variables represent axes in topological space of case base. When selecting axes in discharge models in wet weather by TCBM, the stepwise method is commonly utilized because of the linearity of discharge. It is under multiple linear regression analysis.

Multiple linear regression analysis is the analysis method which examines the relationship between a data vector of one variable y=(y1, … , yn) and a data matrix of multiple variables X=(x11, … , x ji, …, x pn) (i=1,2, … , n, j=1,2, … , p), that have already been measured. When there is a strong linearity between y and X, yi is expressed by following linear equation.

[2] yi =β0+β1x1i + … +βp xpi+εi 
(i=1,2, … , n)

βp : a partial regression coefficient, β0 : a constant term, εi : an error term

In general, when carrying out data analysis with multiple linear regression equations, main input variables for predicting objective variable are selected from many possible explained variables. If inadequate explained variables are chosen, prediction accuracy could be worse or no valid prediction result could be output because of the issue of multicollinearity.

In order to avoid these inadequate variable selections, stepwise method is commonly adapted for discharge model by TCBM. This method iterates the operations that add variables necessary to predict output and delete unnecessary variables after foregoing addition, and eventually finds optimal combination of linear variables.

2.4 Application of the model for estimating a discharge

This model was applied to predicting the discharge of Tama River, and Ishihara (Chofu-shi, Tokyo) was used as the measurement point. Figure 4 shows the Tama River basin and Table 1 describes the data used for discharge prediction.

1) Selecting variables for the model for estimating a discharge
By carrying out a pattern-matching analysis of radar rainfall data of a wide area including Figure 4 and flow data gathered at the measurement points, we selected the optimum points of rainfall data for the prediction model. The radar rainfall data used is Radar-AMeDAS Precipitation. Each grid cell measures approximately 2.5 km x 2.5 km. In analyzing the degree of impact, 4 points were selected as areas having the greatest impact on the fluctuations in discharge. 

The stepwise method was used to select variables from the total rainfall volume of 1 to 360 hours (fifteen irregular intervals) for the 4 points. It was found that the volume of rainfall of 48 hours in the upstream area of point A have a strong impact on river volume; therefore the volume of rainfall of 48 hours was chosen as one of the variables. This number is expected to be generally shorter in urban areas and longer in the suburbs. A total of six variables were selected, including the volume of rainfall of six hours from the midstream area of point B, and the volume of rainfall of 24 hours at point A. 

2) Estimation of a discharge
From the total term of estimating the discharge in Figure 5, the results for September to November 2003 are shown. In terms of error of prediction, the root mean square error (3) is 1.4%, and the predicted values were by and large consistent with the measured values. However, maximum error is 618 [m3/sec], so our next research target is how to minimize the error.
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Table 1:  Data used for discharge estimation

	Flow measurement point
	Tama River, Ishihara
(Chofu-shi, Tokyo)

	Period subject
	Apr 1, 2001 to Mar. 31, 2005

	Interval
	1 hour

	Rainfall data
	Radar AMeDAS Precipitation


[image: image5.emf]0

600

1,200

1,800

2,400

3,000

2004/9/16 2004/10/1 2004/10/16 2004/10/31 2004/11/15

Discharge [m

3

/sec]

0

20

40

60

80

100

Rainfall [mm]

Rainfall Measured discharge Estimated discharge


Figure 5:  Discharge estimation by TCBM 
(Ishihara, Sep-2004 ( Nov-2004)
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Figure 6:  Discharge estimation by TCBM without heavy rainfall (Ishihara, Sep-2004 ( Nov-2004)
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Figure 4:  Variables for the discharge estimation 
in Tama River basin

ei is the difference between estimated value and measured value. i is each individual data, n is data volume, Range is maximum observed discharge during target term (= 1762[m3/sec])).
2.5 Estimation of discharges from insufficient case data

In this section, errors in discharge estimation based on insufficient case data are examined. Here, data on heavy rain was removed from a case base created from the sample calculations for the Tama River in the previous section. An estimation model was constructed from the case base without the heavy rain data, and discharges for the same period were estimated. Figure 6 shows the estimation results based on this model for the same period as Figure 5 (September 2004 to November 2004). Significant errors were found in the peak discharge at the time of heavy rain, which was estimated to be lower than in Figure 5, and in the decreasing discharges after the heavy rain, which were estimated to be higher. The root mean square error and the maximum error for the entire evaluation period were 3.1[%] and 1,049[m3/sec], respectively, which are about double the errors in the previous section. These results indicate that the reliability of discharge estimation by TCBM is determined by whether a proper case base can be constructed or not.

3. estimation of a discharge based on HYDRO-BEAM

Discharges during heavy rainfall were estimated by a distributed hydrological model, and the estimated values were added to a case base. In this chapter, Hydro-BEAM, a distributed hydrological model, was used. Figure 7 shows the concept of Hydro-BEAM. Here, discharges in the Tama River are reproduced again by Hydro-BEAM, and the results of simulation based on this model are provided.
3.1 Overview of Hydro-BEAM

Hydro-BEAM is a distributed hydrological model developed by Kojiri et al. This model was developed as a model for evaluating river basin environments. Only the discharge estimation method in this model is used here. In Hydro-BEAM, a unit mesh is divided into ground and river channel cells, and a one-dimensional Kinematic Wave model is applied to the surface layer of a multilayered (4-layer) mesh and to the top layer of the ground or layer A. A linear retention expression based on Darcy’s law is applied to the underground water layers below layer A or layers B to D. The flow directions of meshes, east, west, south, or north, are combined into a runoff model of the entire river system. The flow directions of the river channel network and groundwater are also divided into the four directions. The number of unit meshes equivalent to the catchment basin is defined as a threshold, and the river channel is considered to be composed of more unit meshes than the threshold. Part of the runoff model constitutes the river channel. A unit mesh is a 1 km x 1 km rectangle. The rainfall volume and temperature data from AMeDAS were used as weather data. The Thiessen method was used to assign these data to each mesh, and an altitude correction was made to temperature data with an attenuation rate of 6.5[(C/km].
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Figure 7:  Overview of Hydro-BEAM
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Figure 8:  Flow direction

Table 2:  Geographic condition

	
	Permeability coefficient
[m/sec]
	Horizontal runoff coefficient
[1/d]
	Vertical runoff coefficient
[1/d]
	Porosity
[%]
	Layer thickness
[m]

	A layer
	1.2 ( 10-3
	-
	-
	20
	2.0

	B layer
	-
	1.0 ( 10-2
	0.1
	10
	7.0

	C layer
	-
	1.0 ( 10-2
	0.1
	10
	10.0

	D layer
	-
	1.0 ( 10-2
	-
	10
	20.0


3.2 Reproduction of discharges estimation using Hydro-BEAM

Figure 8 shows a runoff diagram of the Tama River basin and Table 2 shows the geographic conditions of this area. Observations at 8 AMeDAS observation points around the basin were used as weather conditions. The data was converted to data for individual 1 x 1 km meshes by the Thiessen method. Data for a period of January 1, 2001 to December 31, 2003 was calculated. However, considering that the data for the beginning of the period is affected by the initial values, data for a 2 year and 9 month-period of April 1, 2001 to December 31, 2003 was evaluated. Figure 9 shows the calculation results. This method took more time for preparation before estimation and for calculation than the estimation by TCBM described in the previous chapter. When compared to the discharge measurements, the root mean square error was as small as 2.1%. But the maximum error in the evaluation period was as large as 2,052[m3/sec].

3.3 Simulation of discharge estimation using Hydro-BEAM

Based on the model and the parameter settings in the previous section, discharges were simulated by changing rainfall volume. In this simulation, rainfall volume for the calculation period was multiplied by 1.5 and 2. This is to cover a bicentennial heavy rain. Table 3 shows conditions used for calculation in this simulation. Figure 9 shows the simulation results. This figure quantitatively indicates that increases in rainfall volume like case 1 and case 2 increase discharges. On September 10, when the area had heavy rain at one time, the discharge for case 1 is higher than that for case 2 at a certain point of time. In the next chapter, a new case base is constructed based on these results.

Table 3:  Calculation condition on simulations 

	case
	Explanation
	Maximum rainfall per hour [mm]
	3-years  Rainfall [mm]

	case0
	repetition
	44
	
5,008

	case1
	1.5 times rainfall
	66
	
7,512

	case2
	2.0 times rainfall
	88
	
10,016


4. Development of a new Discharge Prediction Model, HYDRO-TCBM
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Figure 9:  Discharge estimation by Hydro-BEAM

4.1 Structure of Hydro-TCBM

Figure 10 shows the structure of Hydro-TCBM. This chapter gives a description of Hydro-TCBM using case base I, in which measurements are stored, and case base II, in which simulation results are stored. The lower half of Figure 10 corresponds to conventional TCBM, and the upper half corresponds to conventional Hydro-BEAM. Combining these two, the entire figure constitutes a new discharge prediction model, Hydro-TCBM. 

4.2 Estimation of discharges by Hydro-TCBM

Figure 11 shows the results of discharge estimation using new case bases. The figure also contains the results of discharge estimation based on the estimation model without heavy rain data shown in Figure 6. By comparing these results, the effect of case base II can be seen. Table 4 shows the errors in these estimation results. The estimation results by Hydro-TCBM showed a smaller root mean square error and maximum error, which indicate that case base II is effective.

5. Conclusion

We have worked on the development of a real-time discharge prediction method based on TCBM. When combined with a learning function, TCBM allows highly accurate prediction of discharges. However, a learning function cannot always be used. Improving the reliability of discharge prediction for unprecedented rainfall has been a major challenge of this model. Thus, we created a new case base that combines past data with simulation results by Hydro-BEAM, a distributed hydrological model, and developed Hydro-TCBM, a discharge prediction method that uses this enhanced case base. Calculations were performed using data in the Tama River with Hydro-TCBM, and it was found that the estimation results showed smaller errors than discharge estimation by conventional TCBM. Based on weather forecast data, Hydro-TCBM predicts discharges several hours ahead.
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Figure 11:  Tama River discharge estimation 
by Hydro-TCBM (Ishihara, Sep-2004 ( Nov-2004)
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Figure 10:  Overview of new runoff prediction method: Hydro-TCBM

Table 4:  Errors in discharge estimation 

	
	Root mean square error
[%]
	Maximum error 
[m3/sec]

	TCBM without heavy rain data
	3.1
	
1,049

	Hydro-TCBM
	2.1
	
762
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