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Abstract: Knowledge about input uncertainty and model uncertainty can increase the benefit of flood prediction systems. In order to be useful, the final results of this type of uncertainty analysis must be easily understood by flood forecasters. One possible way to communicate uncertainties is through the use of expected costs as a result of flooding events. We develop a system which is based on a straightforward representation of input uncertainty and produces easily interpretable results.

Within this system, input data (rainfall, snow and soil moisture) are described as random processes, which define the probability distribution of the corresponding variable at any time step. Switching data sources (e.g. forecasts for rainfall from a meteorological model and radar-based forecasts) is modelled as a change of the probability distribution. Uncertainty in the input data is propagated through the hydrological model using a Monte Carlo approach. The rivers Weisseritz and Iller both Germany are used as case studies.  They are important tributaries of the Elbe in Saxony and of the  Danube in Bavaria, respectively.

In addition to the propagation of input uncertainties, a statistical model is used to assess the predictive uncertainty of the hydrological model for the current conditions. The combination of the propagated input data uncertainty and the model uncertainty provides the uncertainty of the predicted runoff again as random process.  Thus, the probability to exceed a certain flood warning level can be determined and used in the subsequent decision process.

In order to further support the decision makers, a simple socio-economic module is used to estimate expected costs based on the predicted distribution of discharge. The benefit of the estimated expected costs is twofold: On the one hand, it will be useful for decision makers in the case of an imminent flood. On the other hand, the influence of input uncertainty reduction on the overall uncertainty of the flood prediction can be evaluated. This allows us to estimate the benefit of reduced input uncertainty in comparison to the current state.  
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1. Introduction

Currently, flood prediction systems often do not include explicit uncertainty considerations. However, trust in the prediction is less likely to be disappointed if a clear statement is made regarding the probability that the prediction may be wrong (e.g. “A stage of 5 m will be exceeded with a probability of 50%”). Also, decisions may change depending on the uncertainty level. However, in situations with limited time, such as before a possible flood event, the available information must be clear and easy to understand. Since sources for uncertainties in flood forecasting are numerous and effects may be complicated, careful considerations about what information to present are necessary beforehand. We think that apart from exceedence probabilities for a small set of river stages, a rough estimation of the expected socioeconomic costs for a number of scenarios may be helpful to the decision maker.

For flood predictions, two major sources of uncertainty exist. First, input data necessary for the prediction model may be incomplete and is often uncertain. Rainfall predictions, for example, are highly uncertain. Furthermore, information about the current water level may not be available or erroneous due to technical problems. Input data may therefore be characterized in the form of a random variable or process, defining the possible values together with their probability. Various sources may then be combined using a Monte Carlo approach. Second, as models are simplifications of the real world, modeling results are based on these simplifications and are therefore uncertain. For past predictions, it is easy to calculate the probability distribution for predicted stages, given a certain observed river stage. Bayes theorem can be used to calculate the probabilities for future observed river stages, given a prediction. This approach is called hydrological uncertainty processor (HUP) and has been introduced by Krzysztofowicz and Kelly (2000). In a next step the cost analysis is carried out. The main variables influencing flood losses have been identified from survey data by Thieken et. al (2005). Based on their model, a rough estimation of  socioeconomic costs for future floods is possible for a set of scenarios.

The goal of this study is to check whether the combination of the two approaches to deal with input and modeling uncertainties together with the cost model gives a feasible tool for decision makers to deal with uncertainty. To do this, the different results from the Monte Carlo simulation will be processed by the HUP and the number of probability distributions will be combined into a single overall distribution for the expected river stage. The flood loss scenarios will provide corresponding estimations for the expected costs. In collaboration with the reservoir control agency of the German state Saxony (Landestalsperrenverwaltung Freistaat Sachsen) we will test the usefulness of the proposed system in an operational setting. In section 2 we will introduce the study areas and the methods. First results from this ongoing research project are presented in section 3. Finally, in section 4 we draw conclusions and consider future steps in this study.

2. Methods

Two head water catchments with a high probability for flash floods (Weisseritz and Iller) were used as study areas. Downscaled rain data was available for the Weisseritz catchment only, but no long record of hydrological predictions was available at the corresponding gauging stations. Therefore, sofar input uncertainty was analyzed for the Weisseritz catchment using ensemble forecasts for rainfall, while modeling uncertainty was determined for the Iller catchment. Finally the socioeconomic model will be described.

2.1 Study Areas

Two catchments were used, as limited data availability did not allow for the performance the entire analysis with one single catchment. The Wilde Weißeritz is situated in the eastern Ore Mountains at the Czech-German border  (Figure 1). The lowest gauging station used in the study was  Ammelsdorf (49.3 km2) downstream of which two large multipurpose reservoirs are situated. Lower gauging stations were not considered to avoid influence of the reservoirs. In August 2002 there was severe flooding in the Weißeritz catchment during which towns along the river as well as the Dresden train station were flooded. The study area has an elevation of 530 to about 900 m asl and slopes are gentle. Soils are mainly campisoils. Landuse is dominated by forests and agriculture. The climate is moderate. During winter, the catchment usually has a snow cover of up to about 1 m for 1 to 4 months. Annual precipitation is around 1000 mm/year.

The Upper Iller catchment is situated in Southwestern Germany, at the German- Austrian border. It is one of the most important tributaries to the German part of the Danube. Data for the gauging station Kempten (954 km², mean annual flow 47 m³/s) was used. The highest point is at 2700 m asl, the lowest (gauge Kempten) at 650 m asl. The Morphology and climate is alpine and pre-alpine, with corresponding flow regime: low flow in winter, high discharge during spring snowmelt and medium flow in summer. The soil is, except for highly permeable gravel deposits in the floodplains, mainly shallow.  The catchment is predominantly covered by coniferous forest and meadows, the urban areas cover less the 3%. The two highest recorded floods within the last 100 years were observed in May 1999 (peak discharge at Kempten: 850 m³/s) and in August 2005 (peak discharge 900 m³/s). This corresponds to  return period of approximately 300-400 years.
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Figure 1: Germany (A) with the Weisseritz (B) and Iller (C) catchment

2.2 Ensemble Rainfall Prediction

The Ensemble Prediction System of the ECMWF (European Center for Medium-Range Weather Forecasts; ECMWF2007) provides a set of 51 ensemble forecasts for Europe for a prediction time of 10 days. These forecasts are available at a  spatial and temporal scale which is not adequate for hydrological modeling. An expanded downscaling method is used to obtain catchment specific predictions of precipitation and temperature (Burger 1996). While linear statistical downscaling assumes that the local climate anomalies are linearly linked to the global circulation anomalies, the expanded downscaling assumes that the local climate covariance is linked bilinearly to the global circulation covariance. Unconstrained minimization of the error cost function as used in linear downscaling is transformed into a constrained minimization problem, with the preservation of local covariance forming the side condition. A general normalization routine is included on the local side in order to perform the downscaling exclusively with normally distributed variables. Application of the expanded operator to the daily global circulation works essentially like a weather generator, providing temperature and rainfall data at the local scale. This approach is especially suited for ensemble predictions, which are not available as local model predictions. The downscaled ensemble time series were used as drivers for the hydrological model.

2.3 Hydrological Model

WaSiM-ETH is a modular, distributed model (Schulla and Jasper 2001)  and was used for the Weisseritz catchment with a regularly spaced grid of 100 m resolution. The model provides methods for the interpolation of meteorological input data. The unsaturated zone is described based on the topmodel approach (Beven & Kirby 1979). We used an extension by Niehoff et al. (2000) to describe macro pores. Channel flow is routed with a simple storage to account for diffusion. Interception, evapotranspiration and snow are also included as modules.

The water balance model LARSIM (Large Area Runoff Simulation Model; Ludwig and Bremicker, 2007) is a conceptional model describing the complex processes in the natural system by simplified model concepts at a subcatchment scale. Flow predictions were calculated by the Bavarian Flood Warning Center (Bayerisches Landesamt für Umwelt, Wasserwirtschaftsamt Kempten) and the operational predictions for the years 2004-2007 were used for further analysis. In short, LARSIM regionalizes and, if necessary, corrects input data internally. The following hydrological processes are considered: interception, evapotranspiration, snow accumulation, snow compaction and snow melt, soil water storage as well as storage and lateral transport in streams and lakes.

2.4 Hydrological Uncertainty Processor

As hydrological models are simplified representations of the environment, forecasts are uncertain, even if sufficient and reliable input data is available. The hydrological uncertainty processor (HUP) proposed by Krzysztofowicz and Kelly (2000) is a system to quantify this model uncertainty. In short, from historical observations, monthly probability distributions of discharge and transition probabilities (Markov process) are constructed, which will provide a prior expected discharge for a given time t1 in the near future. The HUP determines a posterior distribution, conditional to the observed current discharge and the model prediction for time t1. As analytical solutions can be easily determined if data follows a normal distribution, all data is transformed with a normal-quantile-transform before these relationships are calculated, resulting in a meta-Gaussian model. Predictions from the  meta-Gaussian model are transformed back to the original discharge distribution. The HUP is implemented in the data analysis environment R (Ihaka, R. and Gentleman, R., 1996) and will be released soon through the Comprehensive R Archive Network (CRAN).

2.5 Socioeconomic Model

Discharge data is used as input for the flood routing model (HecRas; Brunner, 2002), by which inundation pattern and depths within the floodplain are simulated. For a given flood scenario the flood loss model FLEMO (Thieken et. al 2005) estimates the direct economic flood losses in the residential sector in dependence of water level, building type and building quality.  Losses in the commercial and industrial sectors are distinguished into loss to buildings and loss to equipment and contents.  Loss functions are based on empirical data.  Flood scenarios cover the range from low floods without economic losses to very severe events that may cause large economic losses.

3. Results

As the results come from ongoing research, not all analyses have been completed and the goal of this paper is to present what results can be expected from the methods and how the results will be linked together. First, an example is given of the hydrological predictions for the river Weisseritz calculated with the downscaled ensemble rainfall forecast.  Then, uncertainty estimates from the hydrological uncertainty predictor are presented. This is done for the river Iller, as not enough hydrological predictions are available for the Weisseritz. Unfortunately, at the time of this writing, no results are available from the socioeconomic model.

3.1 Monte Carlo simulation with downscaled ensemble rainfall prediction

Figure 1 shows the results obtained from multiple WaSiM runs with rainfall predictions from the downscaled  ECMWF ensemble. The black dots show the time the prediction was made and the lines show the corresponding 51 realizations from the ensemble prediction. The  downscaled rainfall is much smaller than the true observation for this particular event (Table 1). The extremeness is hard to cover with the described downscaling approach, since rare extremes are difficult to model. Other events agree much better and we are investigating how to deal with this problem (more details in Burger 2008). Nevertheless, figure 1 shows how the range of the ensemble prediction is small for times with predictable conditions and gets much wider  for the time of the extreme rainfall event. The figure also shows that the uncertainty becomes clearly larger with increasing prediction times. While further tests are certainly necessary, we are confident that results from this Monte Carlo approach are suitable to be further processed in the HUP.

Table 1: Statistics of observed (n(stations)=23), reanalysis (n=23), and predicted ensemble (n=23*51) rainfall  for August 13th 2002 


Mean
Median
SD
Max
Min

Observation
123 mm
183 mm
110 mm
281 mm
0 mm

Downscaled Reanalysis Data
14 mm
13 mm
7.9 mm
37 mm
5 mm

Downscaled Ensemble Predictions
10 mm
8.7 mm
7.3 mm
39 mm
0 mm



Figure 1: Predicted discharge calculated with downscaling results of 51 ECMWF ensemble members for the event in August 2002 at the Weisseritz catchment. The four panels show predictions with different lead times. 

3.2 Hydrological Uncertainty Processor HUP

A full characterization of the HUP is beyond the scope of this manuscript and would be too early, as further analyses are necessary. Figure 2 shows first results from the HUP. The top panel features the observations for two small events and the corresponding prior distributions (bands for 0.5 and 0.9 interval as well as the median value) for the discharge data. The distributions result from the Markov process calculated from the observed discharge data. Calculations start at the prediction times shown as colored dots and have a width of approximately 20 m³/s for the 0.9 interval and three hours lead time and quickly widen to a final width of about 50 m³/s for the 0.9 interval within about two days. During the same time, the median value converges to the median monthly discharge. The prior distribution and the likelihood-function describing the relationship between predicted and observed discharge are used to update the distribution into the posterior distribution, shown in the bottom panel (bands for 0.5 and 0.9 interval as well as the median value) together with the results from the prediction.  The posterior distributions also start with a width of about  20 m³/s for the 0.9 interval and three hours lead time but widen much slower than the prior distributions. After about two days the width is around 30 m³/s and the final width of about 50 m³/s is reached after approximately 5 days. It is surprising that the HUP “corrects” high flows from the prediction even for short lead times. As the analysis of the data has not been completed, this might result from outliers in the prediction data.
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Figure 2: Exemplary events for the river Iller with results from the HUP. The top panel shows observations and prior discharge distributions. The lower panel shows observations, predictions, and posterior distributions. Discharge data in m³/s.

4. Conclusions/Outlook

In this work, the key components for a quantification of input and modeling uncertainties in flash-flood prediction have been demonstrated. The next future step will be to accomplish the combination of the approaches with the proposed cost model. The different results from the Monte Carlo simulation will be processed by the HUP and combined into a single overall distribution for the expected river stages. The flood loss scenarios will provide corresponding estimations for the expected costs.

But also the individual components will be further developed. For the input data, the spatial distribution of the rainfall data from a now-casting system based on radar-data will be included in the hydrological model. The HUP will be improved through consideration of rain dependence and a multivariate representation of the transition process as presented by Krzysztofowicz and Maranzano (2004).

Together with the reservoir control agency of the German state Saxony (Landestalsperrenverwaltung Freistaat Sachsen) tests will be made to base reservoir control at the Weisseritz on the information about the prediction uncertainty. First discussions resulted in the following plan: Existing standard reservoir control rules will be tested against the predicted discharge. If the probability to cause damage using these rules exceeds some probability (e.g. 50%), a set of alternative control rules will be simulated, starting with the highest, damage free release capacity at the lower end up the a maximum reduction of the peak discharge at the upper end. Discharge exceedence levels and expected costs – differentiated into damage due to pre-event release and damage due to the event itself – will be determined for all rule sets. The decision maker can then base his decision on this information.
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