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Abstract: A flood event is mainly characterized by peak flow, volume and duration, which are random and mutually correlated in nature. A methodology is developed to derive bivariate joint distributions of the flood characteristics using the concept of copula considering a set of parametric and nonparametric marginal distributions for peak flow, volume and duration to mathematically model the correlated nature among them. A set of parametric distribution functions, and nonparametric methods based on kernel density estimation and orthonormal series are used to determine the marginal distribution functions for peak flow, volume and duration. The concept of copula relaxes the restriction of traditional flood frequency analysis by selecting marginals from different families of probability density functions (pdf) for flood characteristics. The present work performs a better selection of marginal distribution functions for flood characteristics by parametric and nonparametric estimation procedures, and demonstrates how the concept of copula may be used for establishing joint distribution function with mixed marginal distributions.
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1. introduction
Hydrologic design, planning and management problems require a detailed knowledge of flood event characteristics, i.e., flood peak flow, volume and duration. These are random in nature and mutually correlated. Flood frequency analysis defines the severity of a flood event by summarizing the characteristics of flood, and by finding out their mutual dependence structure. A number of methodologies have been developed to perform univariate and multivariate flood frequency analysis but with many restrictive assumptions (Zhang and Singh, 2006). In conventional method of flood frequency analysis, the marginal distribution functions of peak flow, volume and duration are assumed to follow some specific family of parametric distribution function. A drawback of this approach is that, the same family of marginal distributions is assumed for all three flood characteristics. This is not the case in practice. Following this observation, the concept of copula (Sklar, 1959; Nelsen, 2006) has been used recently (Zhang and Singh, 2006; Grimaldi and Serinaldi, 2006; Salvadori et al., 2007) in flood frequency analysis to model the dependence structure among peak flow, volume and duration independently of the types of marginal distributions they follow. It is found that copula based flood frequency analysis performs better than conventional flood frequency analysis. Favre et al. (2004) use bivariate copulas to describe the dependence between peak flow and volume. Zhang and Singh (2006) exploit Archimedean copulas to build bivariate joint distributions of peak flow and volume, and volume and duration.
The frequency analysis is primarily based on the estimation of the probability density function. The parametric approaches for estimating the pdf must assume that the data are drawn from a known parametric family of distributions. It is evident that the parametric method, which depends on prior knowledge of the particular distribution function, has its limitations. To overcome some of the limitations of parametric method, nonparametric density function estimations have been explored in hydrologic frequency estimation. Nonparametric methods are accurate, uniform and particularly suitable for multimodal data. 
The objective of the present work is to perform a better selection of marginal distribution functions for flood characteristics by both parametric and nonparametric estimation procedures, and to demonstrate how the concept of copula may be used for establishing joint distribution function with mixed marginal distributions (Karmakar and Simonovic, 2008). Nonparametric methods based on kernel density estimation and orthonormal series are used. A set of parametric distribution functions is also tested to find out suitable marginals for flood characteristics. Conditional probabilities and corresponding return periods are determined for different combinations of peak flow, volume and duration. Seventy years of stream flow data for Red River at Grand Forks of North Dakota, US, is used for demonstration of the methodology.
2. Multivariate flood frequency analysis
In multivariate flood frequency analysis, it is possible to evaluate joint distributions considering P-V, V-D, P-D and P-V-D combinations. The peak flow (P) of a river is determined by selecting maximum annual flow from stream flow data (Q). Theoretically determination of the flood duration involves the identification of the dates of start and end of flood runoff. Generally, start and end dates of a flood event is determined by finding time boundaries marked by a rise in discharge from base flow, denoting start of a flood runoff, and a return to base flow, denoting end of flood runoff.  In this process base flow can be determined for the historic hydrograph Yue and Rasmussen (2002) selecting the staring date (SDi, corresponding to starting point, si) and ending date (EDi, corresponding to ending point ei) of flood runoff for ith year can be determined, and flood duration for ith year is determined as: Di = Di (base) = (EDi-SDi). The flood volume for ith year is determined as (Yue and Rasmussen 2002):
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 is the observed stream flow of jth day for ith year, 
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 are observed daily stream flows on the starting and ending dates of flood runoff for ith year, respectively. Finally, the annual flood peak flow (P), volume (V) and duration (D) series can be represented as P = {Pi}, V = {Vi} and D = {Di}, respectively. The peak flow for ith year (Pi) is expressed as: 
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 is the jth day base flow for ith year.
2.1 Case Study
To illustrate the methodology developed in the present study for flood frequency analysis, 70 years (1936-2005) of daily stream flow data for Red River at Grand Forks in North Dakota, US, is used. The data is collected from U. S. Geological Survey (USGS) gauging station (05082500). On the basis of the procedure explained, the annual flood hydrograph series, and corresponding annual flood peak flow, volume and duration series are determined.
2.2 Associations among Flood Characteristics
Since P, V and D are the random variables defined by the same physical phenomenon they should be mutually correlated. The dependence of flood variables, P, V and D is ascertained using Pearson’s linear correlation coefficient (
[image: image7.wmf]u

), Kendall’s coefficient of correlation (() and Spearman’s rho (
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). Sample estimate of Pearson’s linear correlation coefficient (
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) for random variables X and Y is expressed as:
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where n is the sample size; 
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 are sample estimates of mean and variance of random variables X and Y, respectively. Kendall’s coefficient of correlation (() is a well known nonparametric measure of dependence or association in theories of copulas (Nelsen 2006). Let {(x1, y1), (x2, y2), … , (xn, yn)} denote a random sample of n observations from a vector (X, Y) of continuous random variables. The estimate of Kendall’s tau is determined as:
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. Like Kendall’s coefficient another nonparametric measure of dependence is Spearman’s rho (
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). If X and Y be continuous random variables whose copula is C, then the population version of Spearman’s rho (
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where 
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 is the unit interval [0, 1]. Table 1 shows that, all three measures of dependence exhibit high positive values, indicating high positive correlation among P, V and D. The pair P-V shows greater mutual degree of dependence than that one of V-D and P-D, which is similar to the observations by Grimaldi and Serinaldi (2006). 
Table 1: Values of Correlation Coefficients for Flood Characteristics

	Flood Characteristics
	Pearson’s Linear Correlation Coefficient
	Kendall’s Coefficient of Correlation
	Spearman's rho Correlation Coefficient

	Peak Flow-Volume
	0.9359
	0.7892
	0.9150

	Volume-Duration
	0.6934
	0.5756
	0.7313

	Peak Flow-Duration
	0.5306
	0.4033
	0.5182


3. Marginal Distributions of Flood Characteristics

Both parametric and nonparametric methods are applied to annual flood peak flow (P), volume (V) and duration (D) data to evaluate best fitted marginal probability density functions. Note that with copula approach, it is not necessary to have the same marginal distribution function for P, V and D, which imparts convenience to perform an extensive search for selecting best fitted margins.

3.1 Parametric Estimation

Many parametric distributions have been used to estimate flood frequencies from observed annual flood series. In hydrology, there is no evidence in favor of any particular parametric distribution. Based on the goodness of fit tests, several distributions often would fit the data equally well, but each distribution would give different estimates of a given quantile. Based on the first four moments and the histograms of the flood variables four most commonly used parametric distribution functions, i.e., exponential, gamma, Gumbel or EV1, lognormal are selected as possible margins. The parameters of each distribution are estimated by conventional Maximum Likelihood Estimation (MLE) and the values are shown in Table 2.
Table 2: Parameters of Marginal Distribution Functions of Flood variables

	PDF
	
	Parameters

	
	
	Peak Flow (P)
	Volume (V)
	Duration (D)

	Exponential: 
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	0.0159
	0.0013
	0.0245

	Gamma:
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	39.956
	885.81
	5.6490
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	1.5787
	0.8921
	7.2251

	Gumbel or EV1:
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	40.485
	413.69
	33.981
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	39.144
	652.34
	11.839

	Lognormal:
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	3.8562
	6.1470
	3.6416
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	0.7971
	1.0873
	0.3697


3.2 Nonparametric Estimation
Most nonparametric density estimation methods can be expressed by a kernel density estimator, which entails a weighted moving average of the empirical frequency distribution of the sample. It involves the use of a univariate kernel function [K(x)], defined by a function having following property:
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A PDF can therefore be used as a kernel function. A normal or Gaussian kernel function with zero mean and variance of one is applied in the present work. A univariate kernel density estimator [
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where n is the number of observations; xl is the lth observation; and h is the smoothing parameter known as ‘bandwidth’, which is used for smoothing the shape of the estimated PDF. For an asymptotically optimal choice for h, an overall measure of the effectiveness of 
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 is provided by the Mean Integrated Squared Error (MISE), described by the following equation:
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 denotes the variance of the kernel function. The bandwidth is estimated in such a way that it minimizes the MISE [Equation 8]. However, some problems limit the application of kernel density estimator: (1) a constant value of h0 for the distribution of a flood variable is unreasonable in skewed distribution; (2) the method implies a very small probability in extrapolation beyond the highest observed data in the sample. The extrapolation is based on the shape of the kernel density function assumed and the value of h0. To avoid such drawbacks, the methodology based on orthonormal series is applied to estimate the marginal distributions of P, V and D. An orthonormal series is a series of orthonormal functions, 
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Typically a univariate density function of a random variable X may be well approximated by an orthonormal series 
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where J is called the cut-off, 
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 are the coefficients corresponding to each function. In the present work, the subset of the Fourier series consisting of cosine functions is selected as orthonormal series:
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After estimating the PDF for peak flow, volume and duration by orthonormal series method, numerical integration is performed for evaluating the CDF for each flood variable. Figure 1 shows the histogram of peak flow, volume and duration, with the parametric and nonparametric densities fitted to the data sets. It is seen that, the histogram of duration data has bimodal shape that cannot be reproduced by any parametric distributions commonly used. However, this bimodality is modeled effectively by the density function obtained from orthonormal series method.
3.3 Goodness of Fit Tests

The CDFs for flood variables estimated by parametric and nonparametric procedures are fitted to the data series of P, V and D and are compared with their empirical nonexceedance probabilities, 
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, obtained from plotting position formula. The Gringorten approach is one of the commonly used plotting position formula and is expressed as: 
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Figure 1: Comparison of Different Probability Density Estimates with Observed Frequency
where 
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 is the cumulative frequency, the probability that a given value is less than the kth smallest observation in the data set of N observations. k is the kth smallest observation in the data set arranged in ascending order. In the present study, The Root Mean Square Error (RMSE), Akaike Information Criterion (AIC) and Bayesian Information Criteria (BIC) or Schwarz criterion are used as goodness of fit statistics for the parametric and nonparametric probability density functions selected for possible margins of P, V and D. The RMSE is expressed as:
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 denote the ith computed and observed values, respectively; k is the number of parameters used in obtaining the computed value; and N is the number of observations. The best fitted distribution function is the one that has the minimum RMSE value.

The AIC can be expressed as:
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The BIC can be expressed as:
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The best model is the one which has the minimum AIC and BIC-values. Table 3 shows RMSE, AIC and BIC values for peak, volume and duration.
Table 3: Comparison of RMSE, AIC and BIC Values of Flood Variables for Different Distributions
	Distribution

Function
	
	RMSE
	
	
	AIC
	
	
	BIC
	

	
	P
	V
	D
	P
	V
	D
	P
	V
	D

	Kernel
	0.054
	0.103
	0.026
	-583.03
	-454.18
	-730.34
	-583.03
	-454.18
	-730.34

	Orthonormal
	0.020
	0.021
	0.019
	-781.24
	-773.36
	-788.02
	-781.24
	-773.36
	-788.02

	Exponential
	0.047
	0.045
	0.273
	-610.31
	-618.72
	-257.97
	-607.70
	-616.12
	-255.37

	Gamma
	0.017
	0.039
	0.023
	-813.25
	-647.89
	-746.61
	-808.04
	-642.68
	-741.40

	Gumbel
	0.066
	0.171
	0.027
	-540.47
	-349.01
	-719.57
	-535.26
	-343.80
	-714.36

	Lognormal
	0.021
	0.025
	0.023
	-771.86
	-730.35
	-746.27
	-766.64
	-725.14
	-741.06


The peak flow data is best fit with the gamma distribution as it is seen in Table 3 that RMSE, AIC and BIC values are at minimum for gamma distribution (RMSE = 0.016802, AIC = -813.2527 and BIC = -808.0424). The distribution functions obtained from orthonormal series method fit best the flood volume and duration data sets, as RMSE (0.020930 for volume and 0.019447 for duration), AIC and BIC (-773.3609 for volume and -788.0164 for duration) values are at minimum. Therefore, the flood variable P seems to follow gamma distribution, and flood variables V and D seem to follow distribution function obtained from orthonormal series method. The method of determining joint distributions of different combinations of flood characteristics using copula functions is given in the next section.
4. Joint distributions for flood characteristics

The concept of copula function may be used for generating joint distribution function from different families of marginal distributions. A copula (Sklar, 1959) is a joint distribution function of standard uniform random variables. A bivariate copula can be represented as (Nelsen, 2006):
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. Sklar (1959) showed that every n-dimensional distribution function F can be written as (Nelsen, 2006):
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where F1, .... , Fn are marginal distribution functions. If F1, .... , Fn are continuous, then the copula function C is unique and has the following representation (Nelsen, 2006):
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where the quantile 
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. The Archimedean, elliptical, extreme value copulas are some widely applied classes of copula functions. In the present study, Ali-Mikhail-Haq, Cook-Johnson and Gumbel-Hougaard bivariate copulas (n=2) are considered for the analysis, which belong to the class of Archimedean copula. In general, a bivariate Archimedean copula can be defined as (Nelsen, 2006): 
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where subscript ( of copula C is the parameter hidden of the generating function (. ( is a continuous function, called generator, strictly decreasing and convex from I = [0,1] to [0, ((0)]. The mathematical expressions of single-parameter bivariate Archimedean copulas and their fundamental properties applied in this study are listed in Table 4. For each bivariate Archimedean copulas, value of ( can be obtained by considering mathematical relationship (Nelsen, 2006) between Kendall’s coefficient of correlation (() and generating function ((t).
Table 4: Some Single-Parameter Bivariate Archimedean Copulas
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	Ali-Mikhail-Haq Family:


[image: image87.wmf])]

u

1

)(

u

1

(

1

[

u

u

2

1

2

1

-

-

q

-


	[-1,1)
	
[image: image88.wmf]}

t

)]

t

1

(

1

[

ln{

-

q

-


	
[image: image89.wmf])]

1

ln(

)

1

(

3

2

[

]

)

2

3

(

[

2

1

q

-

q

-

-

q

-

q

-




	Cook-Johnson Family:
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	Gumbel-Hougaard Family:


[image: image93.wmf]}

]

)

u

ln

(

)

u

ln

[(

exp{

/

1

2

1

q

q

q

-

+

-

-


	[1,()
	
[image: image94.wmf]q

-

)

t

ln

(


	
[image: image95.wmf])

1

(

1

-

q

-





4.1 Determination of Generating Function and Resulting Copula

The procedure to obtain the generating function and the resulting copula is described by Genest and Rivest (1993). It assumes that for a random sample of bivariate observations 
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 which also can be regarded as an alternative expression of the joint CDF. The procedure involves the following steps: (1) Determine Kendall’s 
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 for each of the three copulas given in Table 4; (3) Obtain the generating function, 
[image: image103.wmf]f

, of each copula; (4) Obtain the copula from its generating function. The joint distribution functions using three above mentioned copulas for P-V, V-D and P-D are generated.
4.2 Identification of Archimedean Copula

The next step is to identify an appropriate copula. Genest and Rivest (1993) defined an intermediate random variable Z=Z(x, y) which has a distribution function K(z)=P(Z ( z), where z is a specific value of Z. This distribution function is related to the generating function of the Archimedean copula, determined earlier, as Genest and Rivest (1993).
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 is constructed. A parametric estimate of K using Equation 22 with zi is also constructed. A plot nonparametrically estimated KN(z) versus parametrically estimated K for each copula is generated. The plot, called Q-Q plot, indicates whether the quantiles of nonparametrically estimated KN(z) and parametrically estimated K(z) are in agreement. If the plot is in agreement with a straight line that passes through the origin at a 45° angle, then the generating function is satisfactory. The 45° line indicates that the quantiles are equal. Otherwise, the copula function needs to be reidentified. Figure 2 shows Q-Q plot for P-V. Similarly, Q-Q plots for V-D and P-D are generated, which indicate whether the quantiles of nonparametrically estimated KN(z) and parametrically estimated K(z) are in agreement for three different copula models used in the present study. The joint CDF for P-V, V-D and P-D evaluated from copula method are also compared with their empirical nonexceedance probabilities, obtained from plotting position formula following the same procedure as discussed in Subsection 3.3. The RMSE [Equation 14], AIC statistics [Equations 15-16] and BIC statistics [Equation 17] are used to test the goodness of fit of sample data to the theoretical joint distribution obtained by using copula functions. Table 5 shows RMSE, AIC and BIC values for joint distributions obtained by using different copula function for P-V, V-D and P-D. It can be concluded from Table 5 that Gumbel-Hougaard copula is best model for the joint distributions of P-V, V-D and P-D combinations, as minimum value of RMSE, AIC and BIC are obtained.
Table 5: Comparison of RMSE, AIC and BIC Values for Joint Distributions of Different Combination of Flood Variables using Copula Models
	Copula
	
	RMSE
	
	
	AIC
	
	
	BIC
	

	
	P-V
	V-D
	P-D
	P-V
	V-D
	P-D
	P-V
	V-D
	P-D

	Ali-Mikhail-Haq
	0.141
	0.090
	0.056
	-68.43
	-84.64
	-101.76
	-67.54
	-83.75
	-100.87

	Cook-Johnson
	0.031
	0.058
	0.055
	-122.80
	-100.50
	-102.31
	-121.91
	-99.61
	-101.42

	Gumbel-Hougaard
	0.025
	0.027
	0.020
	-130.53
	-128.74
	-138.33
	-129.64
	-127.84
	-137.44


5. Conditional distributions and return periods for flood characteristics

In the present analysis, few particular Conditional Cumulative Distribution Functions (Conditional CDFs) and return periods are evaluated for the Gumbel-Hougaard model, as it is found to be the best fitted copula for all joint distributions, i.e., P-V, V-D and P-D. For hydrologic design and planning purposes, given a flood event return period, it is possible to obtain various occurrence combinations of flood peaks, volumes and durations, and vice versa. It is also desirable in flood frequency analysis to obtain information concerning the occurrence probabilities of flood volumes under the condition that a given flood peak or duration is not exceeded, and vice versa. Conditional return period of 
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 is the joint CDF of random variable X and Y. Likewise, an equivalent formula for Conditional return period of 
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) can be obtained. Figure 3 shows the Conditional CDF of peak flow-volume given flood volume. Figure 3 shows a decreasing trend of the value of Conditional CDF obtained for some specified values of peak flow under different condition of volume, which indicates a positive correlation structure between peak flow and volume. Therefore, positive correlation between peak flow and volume results in less likely occurrence of specified peak flow for low conditioning volume than would be the case for the same specified peak flow under high conditioning volume. The result supports the observation obtained by Zhang and Singh (2006). Similar results for the volume-duration and peak flow-duration combinations are obtained. Figure 4 shows the joint return period for peak flow and volume, i.e., 
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Figure 2: Comparison of Parametric and 

Nonparametric Estimation of K(z) of Peak Flow 
and Volume 
Figure 3: Conditional CDF of Peak Flow and     Volume for Given Flood Volume
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Figure 4: Joint Return Period for Peak Flow and Volume
6. Conclusions
An extensive selection of marginal distribution functions for flood variables is performed by parametric and nonparametric methods, and the concept of copula is used for evaluating joint distribution function with mixed marginal distributions. Modeling joint distribution using copula relaxes the restriction of selecting marginals for flood variables from the same family of probability density functions. A major limitation in the analyses done earlier is that, the selection of marginal distributions for peak flow, volume and duration are confined within only parametric families of distribution functions. Nonparametric methods based on kernel density estimation and orthonormal series are used to determine the nonparametric distribution functions for peak flow, volume and duration. It is found that nonparametric method based on orthonormal series is more appropriate than kernel estimation for determining marginal distributions of flood characteristics as it can estimate the PDF over the whole range of possible values. A set of parametric distribution functions is also tested to find out suitable marginals for flood characteristics. With the marginal distributions thus selected using parametric and nonparametric methods, a set of bivariate distributions for peak flow-volume, volume-duration and peak flow-duration are determined using the concept of bivariate copula.
Conditional probabilities and corresponding return periods are determined for different combinations of peak flow, volume and duration. Results indicate that the proposed approach of flood frequency analysis can be useful in solving several problems of hydrologic design and planning, for which single variable flood frequency analysis cannot provide answers. These different scenarios can be useful for risk assessment associated with hydrologic problems, such as spillway design, flood control, etc.
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