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Abstract: As a result of growing populations and more settlements in flood plains, the number of affected people and the economic losses due to extreme flood events has increased significantly. State-of-the-art optimization algorithms can be used for the optimization of existing as well as future flood control measures in order to reduce the risks caused by flooding.

This paper deals with the development of a Multi-Objective Mixed-Integer Evolution Strategy (MI-ES) combined with a fast operating Non-Linear Flood Routing Simulation Model (BlueM) and the optimization of flood control measures. The objectives include the optimization of the location, the type, and the dimensions and, where possible, the management strategies of flood control measures. 
This method supports flood control planning under consideration of multi-criteria decision variables. The result of the optimization is a so-called Pareto Front, in which all best solutions according to the objectives of minimizing the costs and maximizing the flood protection are depicted. In order to keep computing time within an acceptable range, the non-linear flood routing model based on (Ostrowski 1992) is used.
A Mixed-Integer evolutionary optimization algorithm was applied to investigate ‘If and Where’ flood control measures should be placed. In order to solve the Multiple Objective Combinatorial Optimization (MOCO) problem, an evolution strategy was developed. This algorithm is used to optimize the combinations and thereby the location and the type of the control measures. Additionally, this algorithm has been intertwined with a fast Multi Objective Evolution Strategy (MOES). This MOES is used for optimizing the dimensions and the operating rules of the individual measures.
This paper presents a methodology with which the combined effects of multiple flood control measures can be considered and the whole decision space of potential solutions is explored. In addition, a general introduction to the multi-objective optimization problem and evolutionary algorithms is given.
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1. Introduction
Aim of this work is the development of an integrated modeling System (BlueMR + BlueMOPT) for the purpose of multi-criteria optimization of flood control strategies within rural river systems. Measures such as controlled and uncontrolled retarding basins, dams including their operating rules, polders and the widening of drainage channels are optimized. These measures are modeled within a non-linear flood routing simulation model BlueM​​R, which is part of the integrated river basin model and optimization package called BlueM. BlueM is a simulation software package for the purpose of river basin management, which considers rural (BlueM​R) and urban (BlueMU) areas from an integrated viewpoint. Both are further developments based on models and methods developed at the Section of Engineering Hydrology and Water Management at Technische Universität Darmstadt. Beside the hydrologic models, the BlueM package also includes tools for the optimization of models (BlueMOPT). Within this work (BlueMR + BlueMOPT) were enhanced and adopted for the optimization of flood control strategies.
Making use of optimization algorithms for flood control strategies started in the early seventies. (Hughes 1971) used a mathematical optimization method based on a Lagrange multiplier to identify optimal releases. (Meyer-Zurwelle 1975) also optimized the releases of flood control measures, but instead of a Lagrange multiplier, he used dynamic programming (DP). The exhaustive enumeration method is utilized by (Curtis and McCuen 1977) and (Kamedulski and McCuen 1979) for optimizing detention systems, but becomes computationally intractable for evaluations over a broad range of alternatives. A mixed integer linear programming model proposed by (Doyle et al. 1976) fails to properly incorporate the hydrology and hydraulics of detention systems in the design, nor does it include realistic cost functions in the model. Applications of dynamic programming were introduced by (Mays and Bedient 1982), followed by further extensions and refinements by (Bennett and Mays 1985) and Taur (Taur et al. 1987). These applications require the specification of iso-drainage lines in defining the stages and states of the dynamic programming problem. The dual-purpose planning concept of (Ormsbee, Houck, and Delleur 1987) extends the application of dynamic programming to include water quality impacts in detention system layout and design. (Otero et al. 1995) applied a genetic algorithm (GA) and a dynamic programming procedure for the optimal planning of a storm water detention system for the South Florida Water Management District. The success of this study was fostered by the ability to directly link the GA with a storm water runoff simulation model developed by District staff.
2. The Optimization Problem
The given optimization problem is based on having various options for flood control measures within a rural river basin. There are several potential locations for flood control reservoirs, restoration, widening of drainage channel, polders, etc. (see Figure 1). It is possible to realize only one measure but it is also possible to realize a combination of measures. Therefore, the aim of the optimization is to find the best combination according to the objectives of minimizing the peak discharge and minimizing the investment costs of the measures. Beside the combinatorial optimization problem of the best combination of measures, each measure has it own parameters. For example, the dimension and the flood control strategy of the control reservoirs can be optimized. This results in a so-called mixed-integer optimization problem, where both continuous parameters such as volume and outlet size as well as the combination of measures itself have to be optimized.
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Figure 1: Schematic optimization problem
The optimization procedure starts by generating λ elements also called children, each consisting of one combination and the corresponding parameters. These λ elements will be evaluated regarding peak discharge and investment costs by use of the flood routing model. After the evaluation, a selection process selects the best μ elements of these λ elements, also called parents. These parents are then used to generate λ new children. Therefore, a so-called reproduction and mutation procedure is used to generate children, which differ just slightly from the parents. Then the evaluation circle is carried out anew.
3. Mixed-Integer Optimization

Mixed-integer evolution strategies (MI-ES) are a special instantiation of evolution strategies that can deal with parameter types, i.e. can tackle problems as described above. From the point of view of numerical analysis, the problem described above can be classified as a black box parameter optimization problem. The evaluation software is represented as an objective function f : S → R to be minimized, whereby S defines a parametric search space from which the decision variables can be drawn. Typically, constraint functions are also defined, the value of which has to be kept within a feasible domain. Typically, the evaluation of the objective functions and partly of the constraint functions are carried out by the evaluation software, which, from the point of view of the algorithm, serves as a black box evaluator. One of the main reasons why standard approaches for black box optimization cannot be applied to the application problem is because different types of discrete and continuous decision variables are involved in the optimization. For the parameterization of the optimization problem three main classes of decision variables are identified:

Continuous variables: These are variables that can change gradually in arbitrarily small steps

Ordinal discrete variables: These are variables that can be changed gradually but there are minimum step size (e.g. discretized levels, integer quantities)

Nominal discrete variables: These are discrete parameters with no reasonable ordering (e.g. discrete choices from an unordered list/set of alternatives, binary decisions).

Here ri denotes a continuous variable, zi an integer variable, and di a discrete variable that can be drawn from a predefined set Di.

For optimizing flood control strategies only continuous variables and nominal discrete variables (the combinations) have to be optimized. Later on the algorithm will be extended for the optimization of ordinal discrete variables, which are often used in real time control of urban areas. Below the multi objective optimization process of the combinatorial and the parameter problem is described.
3.1 Combinatorial Optimization
The optimization procedure is controlled by the combinatorial evolution strategy, which tries to find the best combination of flood control measures. For this, a combination of measures is represented in a so-called path. Figure 2 depicts a river along which seven potential locations for flood control measures have been identified.
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Figure 2: Potential locations for flood control measures

Each location includes a list of measures, which are suitable for this location (see Figure 3). The option of placing no measure at all is also included at each location. 
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Figure 3: Each location has a list of suitable measures.

Within the optimization algorithm, a combination of measures is represented by a path, in which a measure for each location has been selected from the list of measures, see Figure 4.
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Figure 4: Path representation

The aim of the combinatorial optimization is to find the best path that reduces investment costs and peak discharge. For this, the algorithm generates several paths (combinations). All of these paths are evaluated by the flood routing model in order to obtain the peak discharge and the costs for the combination to be tested. There are many operators for so called reproduction and mutation process. In the following, one reproduction and one mutation process is explained in order to demonstrate how new combinations are generated. In order to generate a new path, the algorithm selects two already evaluated paths that already provided good results. These two paths were proven to be the best out of a whole group. In a first step, so called “cut points” are placed, which divide the path into three sub paths, see Figure 5.
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Figure 5: Partially mapped crossover reproduction

The new path is generated by combining the middle path of the parent A with the outer paths of the parent B. Because this process is carried out repeatedly in order to generate up to hundreds of children, a mutation is performed, which changes the new children slightly. The mutation process randomly selects a sub path of each child. In each location of this sub path, a different measure is selected from the list of allowed measures of each location, see Figure 6.
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Figure 6: Sub path mutation

In this example, which includes seven locations and from one to four measures at each location, 4.320 combinations are possible. The number of potential combinations increases exponentially with more locations. E.g. 12 locations and 3 measures at each location including the possibility of doing nothing at each location results in 412 = 16.777.216 combinations. Therefore, the aim of the optimization is to avoid the necessity of having to test all possible combinations, because simulation time is the crucial point within the optimization of decision variables. The evolution strategy is used to find the best combinations with much fewer evaluations.
3.2 Parameter Optimization

This combinatorial optimization procedure does normally not consider the parameters (e.g. model parameters and set points of control rules) to be optimized. Therefore, the combinatorial optimization is intertwined with a multiobjective evolution strategy that optimizes the continuous variables. The following definitions of the MOP are adopted from (Deb 2001). According to Deb, a MOP has a number of objective functions, which are to be minimized or maximized. As already mentioned in chapter 3, the problem usually has a number of constraints, which any feasible solution must satisfy. In the following, the multi-objective optimization problem is stated in its general form.
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A solution x is a vector of N decision variables (x = (x1,…,xN)). The last set of constraints restricts each decision variable xi (i=1,…, N) to take a value within a lower and an upper bound. These bounds constitute a decision variable space Ω. Associated with the problem are J inequality and K equality constraints. A solution x that does not satisfy all of the J+K constraints and all of the 2N variable bounds stated above is called an infeasible solution. On the other hand, if a solution x satisfies all constraints and variable bounds, it is called a feasible solution. In the presence of constraints, it is not necessary that the entire decision variable space Ω is feasible. In multi-objective optimization, the objective functions constitute a multi-dimensional space, in addition to the usual decision variable space. This additional space is called the objective function space Λ. Each N-dimensional solution vector x in the decision variable space, is mapped onto an M-dimensional objective vector in the objective space. This concept is illustrated in Figure 1 for a problem consisting of two decision variables x1 and x2 with additional constraints and two objective functions f1 and f2, which need to be minimized. The shape of the objective function space depends on the kind of the objectives as well as on the boundary constraints of the decision variables and the objective function space.
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Figure 7: Decision and objective space (De Pauw 2005)
A solution x is termed Pareto optimal when there is no feasible solution x’ that will improve at least one objective function value without worsening at least one other objective function value. Mathematically, a solution x is Pareto optimal if and only if there is no solution x’ for which v = F(x’) = (f1(x’),…,fm(x’)) dominates u = F(x) = (f1(x),…,fm(x)). Whereas a vector u = (u1,…,um) dominates a vector v = (v1,…,vm) if and only if u is component-wise lower than v (for a minimization problem).

The Pareto set is the set of Pareto optimal solutions, which is also called the set of non-dominated or non-inferior solutions. The Pareto front is the mapping of the Pareto set from the decision variable space onto the objective function space.

4. Cases Study
The optimization process is controlled by the optimization algorithm. It defines the new combinations and coresponding parameters, writes them to file as model parameters for the simulation model BlueM​R and starts the model. After the simulation, the optimization algorithm evaluates the time series results which are generated by the model. In this example, the optimization algorithm pays special attention to the peak discharge at two different locations.
To keep simulation time as small as possible for the development of the mixed-integer optimization algorithm a small test system was used. It is based on the Erft river basin near cologne in Germany. Ten different measures distributed over three locations. Additionally to the combinations about 30 parameters have to be optimized. The combinatorial optimization algorithms switches the single measures on and of by using Y junctions. Aim of the optimization is the reduction of the peak discharge Q at the location A and B and the reduction of the investment costs. As input data discharge series about seven days discretized to fifteen minutes are used. In this example the flood wave has a peak discharge of 45 m³/s.  This results in a simulation time about 3 seconds. Keeping the system small and fast is important for testing the developed code within acceptable time.
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Figure 8: Scheme of the semi hypothetical test system
In Figure 8 Qmax, A is plotted on the x-axis, Qmax, B on the y-axis. The z-axis displays the investment costs for the measures. Each single dot represents the results of one flood simulation. For this small test system the optimization procedure needs already hundreds of simulations to obtain sufficient information on the capacity of the solution space.
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Figure 9: Comparison of two optimization results
Within Figure 8 two optimization results are compared. On the left side, the pareto front is well approximated by a few evaluations. The results are concentrated on the area around the pareto front. In the comparison to the right many more evaluations were done, but it looks like a random search, which does not use the information of former optimization results. The algorithm was not able to find the so called gradient path which is described in (Rechenberg 1973). Reason for this optimization result was that the combinatorial optimization did not allow the algorithm enough time for optimizing the parameters of each single measure.
5. Conclusion
The developed model and optimization systems BlueMR + BlueMOPT are able to optimize flood control systems quickly and reliably. Important is that the optimization of the single parameters of the measures is not heterodyned be the combinatorial optimization. A slight variation of the combination allows the parallel optimization of the continuous and nominal variables.

Because of the separation between the used flood routing model (BlueMR) and the optimization algorithm (BlueMOPT), the complexity of the model does not have to be reduced. So all measures that can be modeled can also be optimized by the optimization system BlueMOPT. BlueMOPT can be connected to any model that is ASCII file based or where a direct access to the parameters is provided.

Within this model and optimization systems two intertwined optimization algorithms are used. This the number of settings for the algorithms increase significantly. An increase of optimization speed leads to the problem that only local minima and not the global minimum are found.
At present, hydraulic models that depict the flooding situation more accurately, are too computationally intensive. In order to reduce simulation time, hydrological models have to be used, which leads to inaccuracies in simulating the floods. In some case studies, hydraulic models are used to simulate all measures sepparetly. Then, in a second step, the single measures are combined with the other measures using an accumulation method. Within the method described here, it is guaranteed that the interaction of the measures is depicted correctly.
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