RESILIENCE

A New Metric for the Assessment of Measures for Adaptation to Global Change

Slobodan P. Simonović

FCAE, FCSCE, FASCE, FIWRA Department of Civil and Environmental Engineering Western University

2 CONCLUSIONS

- There are practical links between adaptation to global change and sustainable development leading to:
 - re-enforcing resilience as a new development paradigm
- The main goal of Regional Resilience Assessment Program in Canada and US is to identify and analyze the resilience and interdependencies of water sectors using an all-hazards approach
- Systems approach to quantification of resilience allows:
 - capturing temporal and spatial dynamics of water resources management
 - better understanding of factors contributing to resilience
 - more systematic assessment of various measures to increase resilience

3 PRESENTATION OUTLINE

- Introductory remarks
- From risk to resilience
 - Limitations of risk management
 - Definition of resilience
 - Quantification of resilience
 - Implementation of quantitative resilience measure
 - Systems approach (simulation, time and space)
- Examples
 - Climate change caused urban flooding
 - Multi purpose reservoir operation
 - Urban infrastructure network system
- Conclusions

Principal investigator

- Systems Engineering Approach to the Reliability of Complex Hydropower Infrastructure
 - NSERC CRD with BC Hydro: 2014-2018 \$673,334 Series BC hydro III
- Linking Hazard, Exposure and Risk Across Multiple Hazards
 - NSERC CRD with Chaucer Synd.: 2015-2019 \$1,375,600 Served

Co-investigator

- Coastal Cities at Risk (CCaR): Building Adaptive Capacity for Managing Climate Change in Coastal Megacities
 - IDRC International Research Initiative on adaptation to Climate Change: 2011 – 2016 \$2,500,000

Advanced Disaster, Emergency and Rapid Response Simulation NSERC CREATE: 2015-2021 \$1,650,00

- Global change
 - Population growth
 - Land use change
 - Climate change
 - Complexity and uncertainty
- Infrastructure systems (hard)
 - Water
 - Energy
 - Transport
 - Communications
- Infrastructure (soft)
 - Institutional
 - Social
 - Cultural

6 RISK TO RESILIENCE Need for paradigm change

7 RISK TO RESILIENCE Need for paradigm change

- Latin origin *resilire, resilio* bounce
- Mechanics strength and ductility of steel beams (Rankin, 1867)
- Systems theory ecology (Von Bertalanffy, 1950; Holling, 1973)
 - ...measure of he persistence of systems and their ability to absorb change and disturbance and still maintain the same relationships between populations or state variable...
- Hazard based
 - ...capacity for collective action in response to extreme events...
 - ... the capacity to absorb shocks while maintaining function...
 - ...the capacity to adapt existing resources and skills to new situations and operating conditions...
- Used in this research –after UNISDR (2009)
 - the ability of an infrastructure system and its component parts to absorb, accommodate or recover from the effects of a system disruption in a timely and efficient manner, including through the preservation, restoration or improvement of its essential basic structures and functions...

System performance and system adaptive capacity

- System performance and system adaptive capacity
- Transformation of system performance into resilience

$$\rho^i(t,s) = \int_{t_0}^t \left[P_0^i - P^i(\tau,s)\right] d\tau$$

$$r^{i}(t,s) = 1 - \left(\frac{\rho^{i}(t,s)}{P_{o}^{i} \times (t-t_{o})}\right)$$

$$R(t,s) = \{\prod_{i=1}^{M} r^{i}(t,s)\}^{\frac{1}{M}}$$

$$\frac{\partial R(t,s)}{\partial t} = \prod_{i} \left[AC^{i}(t,s) - P^{i}(t,s) \right]$$

where $t \in [t_0, t_r]$

11 RESILIENCE Implementation – temporal and spatial dynamics

12 EXAMPLE 1 Climate change caused urban flooding

- Vancouver
 - Sea level rise
 - Riverine flooding
 - Set of climate scenarios
- Impacts (i)
 - Physical
 - Social
 - Health
 - Economic

13 EXAMPLE 1 Climate change caused urban flooding

14 EXAMPLE 2 Multi purpose reservoir operation

- Reservoir (BC Hydro)
 - Hydropower production
 - Water supply
- Continuity

$$S_t = S_{t-1} + I_t - TR_t - O_t - SP_t$$

- Power production $P_t = \gamma * PR_t * \eta * (E_t - E_{TL})$
- System performance $SP_{p,t} = \frac{PR_t}{PR_t^{demand}}$ $SP_{i,t} = \frac{WS_t}{WS_t^{demand}}$

$$CSP_{i,t} = \int_{t0}^{t} [SP_{i,0} - SP_{i,t}] dt$$
$$DR_{i,t} = 1 - \left(\frac{CSP_{i,t}}{SP_{i,0} \times (t-t_0)}\right)$$
$$SR_t = \left[\prod_{i=1}^{l} DR_{i,t}\right]^{\frac{1}{l}}$$

15 EXAMPLE 2 Multi purpose reservoir operation

- **Turbine failure**
 - Single event
 - **Temporal variability**
 - No spatial variability •

- Water scarcity
 - Water supply
 - Temporal and spatial variability

1.0 -(a)

0.8

0.6 -0.4 0.2 -

0.0

1.0 (b)

0.6 0.4

0.2

0.0 1.0 (c)

0.8

0.6 -

0.4 -0.2 -

0.0

0

500

1000

1500

2000

Time (days)

2500

Resilience 0.8

16 EXAMPLE 3 Urban infrastructure network system

- Four layers:
 - Streets
 - Water supply
 - Energy supply
 - Information
- Nodes and edges (two states)
- Intra and interconnections
- Single and multiple disasters

- Five recovery strategies
 - First repair first failures
 - First repair last failures
 - First repair important components independently
 - First repair the obvious dependent elements
 - First repair the hidden dependent elements

17 EXAMPLE 3 Urban infrastructure network system

• Test network

- Four layers of four cells
- 16 street nodes and 54 street segments
- 16 water network nodes and 16 water pipes
- 36 power network nodes and 16 transmission lines
- 5 information network nodes and 8 information network lines

19 EXAMPLE 3 Urban infrastructure network system

6

Pipelines

t

- Prototype
 - ResilSIM
 - Public data for London and Toronto
 - Flooding
 - Web based
 - <u>www.resilsim-uwo.ca</u>
- Real decision support system for City of Toronto

38 CONCLUSIONS

- There are practical links between adaptation to global change and sustainable development leading to:
 - re-enforcing **resilience** as a new development paradigm
- The main goal of Regional Resilience Assessment Program in Canada and US is to identify and analyze the resilience and interdependencies of water sectors using an all-hazards approach
- **Systems approach** to quantification of resilience allows:
 - capturing temporal and spatial dynamics of water management
 - better understanding of factors contributing to resilience
 - more systematic assessment of various measures to increase resilience

www.slobodansimonovic.com

Research -> FIDS -> Research projects

- Simonovic, S.P., and A. Peck, (2013) "Dynamic Resilience to Climate Change Caused Natural Disasters in Coastal Megacities -Quantification Framework", *British Journal of Environment and Climate Change*, 3(3): 378-401.
- Simonovic, S.P., (2016) "From risk management to quantitative disaster resilience a paradigm shift", *International Journal of Safety and Security Engineering*, 6(1):1–12.
- Simonovic, S.P., and R. Arunkumar, (2016) "Comparison of static and dynamic resilience for a multi-purpose reservoir operation", *Water Resources Research*, 52, online first doi:10.1002/2016WR019551.

SLOBODAN P. SIMONOVIC 40

- Computer-based research laboratory
- Research:
 - Subject Matter Systems modeling; Risk and reliability; Water resources and environmental systems analysis; Computer-based decision support systems development.
 - Topical Area Reservoirs; Flood control; Hydropower energy; Operational hydrology; Climatic Change; Integrated water resources management.
- ~ 70 research projects; ~ \$11.5 M
- 7 visiting fellows, 15 PosDoc's, 20 PhD's and 40 MESc's
- 3 PosDoc's, 4 PhD's, and 3 MESc's
- Water Resources Research Reports 95 volumes (~55,000 downloads since 2011)
 - Access through my web page

50,592

TDS

CELEBRATING

1989 - 2014

X View Larger

11,380

41 SLOBODAN P. SIMONOVIC

- > 500 professional publications
- 210 in peer reviewed journals
- 3 major textbooks

42 SLOBODAN P. SIMONOVIC Current research projects

- Coastal Cities at Risk Building Adaptive Capacity for Managing Climate Change in Coastal Megacities (spatial and temporal modeling of resilience)
- Extreme Flow Uncertainty Under Changing Climatic Conditions
- Water Resources Management Capacity Building in the Context of Global Change
- Systems Engineering Approach to the Reliability of Complex Civil Infrastructure
- Advanced Disaster, Emergency and Rapid Response Simulation
- Linking hazard, exposure and risk across multiple hazards